Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38570431

RESUMO

The impact of biogas residual biochar (BRB) on the humification and carbon balance process of co-composting of hog slurry (HGS) and wheat straw (WTS) was examined. The 50-day humification process was significantly enhanced by the addition of BRB, particular of 5% BRB, as indicated by the relatively higher humic acid content (67.28 g/kg) and humification ratio (2.31) than other treatments. The carbon balance calculation indicated that although BRB addition increased 22.16-46.77% of C lost in form of CO2-C, but the 5% BRB treatment showed relatively higher C fixation and lower C loss than other treatments. In addition, the BRB addition reshaped the bacterial community structure during composting, resulting in increased abundances of Proteobacteria (25.50%) during the thermophilic phase and Bacteroidetes (33.55%) during the maturation phase. Combined these results with biological mechanism analysis, 5% of BRB was likely an optimal addition for promoting compost humification and carbon fixation in practice.

2.
Bioresour Technol ; 400: 130681, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599350

RESUMO

Excavating nitrogen-fixing bacteria with high-temperature tolerance is essential for the efficient composting of animal dung. In this study, two strains of thermophilic nitrogen-fixing bacteria, NF1 (Bacillus subtilis) and NF2 (Azotobacter chroococcum), were added to cow dung compost both individually (NF1, NF2) and mixed together (NF3; mixing NF1 and NF2 at a ratio of 1:1). The results showed that NF1, NF2, and NF3 inoculants increased the total Kjeldahl nitrogen level by 38.43%-55.35%, prolonged the thermophilic period by 1-13 d, increased the seed germination index by 17.81%, and the emissions of NH3 and N2O were reduced by 25.11% and 42.75%, respectively. Microbial analysis showed that Firmicutes were the predominant bacteria at the thermophilic stage, whereas Chloroflexi, Proteobacteria, and Bacteroidetes were the predominant bacteria at the mature stage. These results confirmed that the addition of the isolated strains to cow dung composting improved the bacterial community structure and benefited nitrogen retention.

3.
Heliyon ; 10(5): e27195, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468954

RESUMO

Pachyonychia congenita is an uncommon autosomal dominant skin disorder characterized by hypertrophic nail dystrophy, palmoplantar keratoderma, oral leukokeratosis, and cutaneous cysts. And fissured tongue is rarely reported in patients with pachyonychia congenita. The disease is primarily associated with mutations in five keratin genes, namely KRT6A, KRT6B, KRT6C, KRT16 or KRT17. Herein we report a 9-year-old Chinese girl who has thickened nails, keratinized plaques, and fissured tongue since birth. To investigate the underlying genetic cause, whole-exome sequencing and Sanger sequencing were performed in this patient and her family members. We identified a candidate variant c.1460-2_1460del (p.S487Lfs*21) in the KRT6A gene (NM_005554.4) by whole-exome sequencing. Sanger sequencing revealed the absence of the mutation in both parents, indicating that it is a de novo variant. Thus, the novel heterozygous frameshift mutation c.1460-2_1460del (p.S487Lfs*21) within exon 9 of KRT6A was identified as the genetic cause of the patient. Our study identified a rare de novo heterozygous frameshift mutation in the KRT6A gene in a patient with pachyonychia congenita presenting fissured tongue. Our findings expand the KRT6A gene mutation spectrum of Pachyonychia congenita, and will contribute to the future genetic counseling and gene therapy for this disease.

4.
Small ; : e2311644, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456373

RESUMO

In the emerging Sb2 S3 -based solar energy conversion devices, a CdS buffer layer prepared by chemical bath deposition is commonly used to improve the separation of photogenerated electron-hole pairs. However, the cation diffusion at the Sb2 S3 /CdS interface induces detrimental defects but is often overlooked. Designing a stable interface in the Sb2 S3 /CdS heterojunction is essential to achieve high solar energy conversion efficiency. As a proof of concept, this study reports that the modification of the Sb2 S3 /CdS heterojunction with an ultrathin Al2 O3 interlayer effectively suppresses the interfacial defects by preventing the diffusion of Cd2+ cations into the Sb2 S3 layer. As a result, a water-splitting photocathode based on Ag:Sb2 S3 /Al2 O3 /CdS heterojunction achieves a significantly improved half-cell solar-to-hydrogen efficiency of 2.78% in a neutral electrolyte, as compared to 1.66% for the control Ag:Sb2 S3 /CdS device. This work demonstrates the importance of designing atomic interfaces and may provide a guideline for the fabrication of high-performance stibnite-type semiconductor-based solar energy conversion devices.

5.
J Environ Manage ; 356: 120604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518501

RESUMO

This study aimed to explore the co-application of MnSO4 (Mn) and biochar (BC) in nitrogen conversion during the composting process. A 70-day aerobic composting was conducted using swine slurry, supplemented with different levels of Mn (0, 0.25%, and 0.5%) and 5% BC. The results demonstrated that the treatment with 0.5MnBC had the highest levels of NH4+-N (3.07 g kg-1), TKN (29.90 g kg-1), and NO3--N (1.94 g kg-1) among all treatments. Additionally, the 0.5MnBC treatment demonstrated higher urease, protease, nitrate reductase, and nitrite reductase activities than the other treatments, with the peak values of 18.12, 6.96, 3.57, and 15.14 mg g-1 d-1, respectively. The addition of Mn2+ increased the total organic nitrogen content by 29.59%-47.82%, the acid hydrolyzed ammonia nitrogen (AN) content by 13.84%-57.86% and the amino acid nitrogen (AAN) content by 55.38%-77.83%. The richness of Chloroflexi and Ascomycota was also enhanced by the simultaneous application of BC and Mn. Structural equation modeling analysis showed that Mn2+ can promote the conversion of Hydrolyzed Unknown Nitrogen (HUN) into AAN, and there is a positive association between urease and NH4+-N according to redundancy analysis. Firmicutes, Basidiomycota, and Mortierellomycota showed significant positive correlations with ASN, AN, and NH4+-N, indicating their crucial roles in nitrogen conversion. This study sheds light on promoting nitrogen conversion in swine slurry composting through the co-application of biochar and manganese sulfate.


Assuntos
Compostos de Manganês , Nitrogênio , Solo , Sulfatos , Animais , Suínos , Nitrogênio/metabolismo , Urease , Esterco , Carvão Vegetal
6.
Bioresour Technol ; 399: 130589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490461

RESUMO

The tolerance of Pseudomonas monteilii X1, isolated from pig manure compost, to Cd and Zn, as well as its capacity for biosorption, were investigated. The minimum inhibitory concentrations (MIC) of Cd and Zn for the strain were 550 mg/L and 800 mg/L, respectively. Untargeted metabolomics analysis revealed that organic acids and derivatives, lipids and lipid-like molecules, and organic heterocyclic compounds were the main metabolites. The glyoxylate and dicarboxylate metabolism pathway were significantly enriched under Cd2+ stress. The isothermal adsorption and adsorption kinetics experiments determined that the strain had adsorption capacities of 9.96 mg/g for Cd2+ and 23.4 mg/g for Zn2+. Active groups, such as hydroxyl, carboxyl, and amino groups on the cell surface, were found to participate in metal adsorption. The strain was able to convert Zn2+ into Zn3(PO4)2·4H2O crystal. Overall, this study suggested that Pseudomonas monteilii has potential as a remediation material for heavy metals.


Assuntos
Compostagem , Metais Pesados , Pseudomonas , Suínos , Animais , Cádmio/química , Zinco/química , Esterco , Metais Pesados/análise , Cinética , Compostos Orgânicos , Adsorção
7.
Sci Total Environ ; 923: 171543, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453068

RESUMO

Straw returning is widely found elevating the bioavailability of cadmium (Cd) in paddy soils with unclear biogeochemical mechanisms. Here, a series of microcosm incubation experiments were conducted and spectroscopic and microscopic analyses were employed. The results showed that returning rice straw (RS) efficiently increased amorphous Fe and low crystalline Fe (II) to promote the production of hydroxyl radicals (OH) thus Cd availability in paddy soils during drainage. On the whole, RS increased OH and extractable Cd by 0.2-1.4 and 0.1-3.3 times, respectively. While the addition of RS effectively improved the oxidation rate of structural Fe (II) mineral (i.e., FeS) to enhance soil Cd activation (up to 38.5 %) induced by the increased OH (up to 69.2 %). Additionally, the existence of CO32- significantly increased the efficiency level on OH production and Cd activation, which was attributed to the improved reactivity of Fe (II) by CO32- in paddy soils. Conclusively, this study emphasizes risks of activating soil Cd induced by RS returning-derived OH, providing a new insight into evaluating the safety of straw recycling.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo/química , Ferro/análise , Oryza/química , Radical Hidroxila , Poluentes do Solo/análise
8.
J Diabetes Res ; 2024: 5996218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529045

RESUMO

Methods: The Preferred Reporting Items for Systematic Reviews and Analysis checklist was used. A comprehensive literature search of the PubMed, Embase, and Cochrane Library databases was conducted through August 2022 to assess the impact of probiotics on blood glucose, lipid, and inflammatory markers in adults with prediabetes. Data were pooled using a random effects model and were expressed as standardized mean differences (SMDs) and 95% confidence interval (CI). Heterogeneity was evaluated and quantified as I2. Results: Seven publications with a total of 550 patients were included in the meta-analysis. Probiotics were found to significantly reduce the levels of glycosylated hemoglobin (HbA1c) (SMD -0.44; 95% CI -0.84, -0.05; p = 0.03; I2 = 76.13%, p < 0.001) and homeostatic model assessment of insulin resistance (HOMA-IR) (SMD -0.27; 95% CI -0.45, -0.09; p < 0.001; I2 = 0.50%, p = 0.36) and improve the levels of high-density lipoprotein cholesterol (HDL) (SMD -8.94; 95% CI -14.91, -2.97; p = 0.003; I2 = 80.24%, p < 0.001), when compared to the placebo group. However, no significant difference was observed in fasting blood glucose, insulin, total cholesterol, triglycerides, low-density lipoprotein cholesterol, interleukin-6, tumor necrosis factor-α, and body mass index. Subgroup analyses showed that probiotics significantly reduced HbA1c in adults with prediabetes in Oceania, intervention duration of ≥3 months, and sample size <30. Conclusions: Collectively, our meta-analysis revealed that probiotics had a significant impact on reducing the levels of HbA1c and HOMA-IR and improving the level of HDL in adults with prediabetes, which indicated a potential role in regulating blood glucose homeostasis. However, given the limited number of studies included in this analysis and the potential for bias, further large-scale, higher-quality randomized controlled trials are needed to confirm these findings. This trial is registered with CRD42022358379.


Assuntos
Resistência à Insulina , Estado Pré-Diabético , Probióticos , Humanos , Glicemia , Estado Pré-Diabético/terapia , Hemoglobinas Glicadas , Probióticos/uso terapêutico , Homeostase , Colesterol
9.
Mar Biotechnol (NY) ; 26(2): 351-363, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498104

RESUMO

Light is an essential ecological factor that has been demonstrated to affect aquatic animals' behavior, growth performance, and energy metabolism. Our previous study found that the full-spectrum light and cyan light could promote growth performance and molting frequency of Scylla paramamosain while it was suppressed by violet light. Hence, the purpose of this study is to investigate the underlying molecular mechanism that influences light spectral composition on the growth performance and molting of S. paramamosain. RNA-seq analysis and qPCR were employed to assess the differentially expressed genes (DEGs) of eyestalks from S. paramamosain reared under full-spectrum light (FL), violet light (VL), and cyan light (CL) conditions after 8 weeks trial. The results showed that there are 5024 DEGs in FL vs. VL, 3398 DEGs in FL vs. CL, and 3559 DEGs in VL vs. CL observed. GO analysis showed that the DEGs enriched in the molecular function category involved in chitin binding, structural molecular activity, and structural constituent of cuticle. In addition, the DEGs in FL vs. VL were mainly enriched in the ribosome, amino sugar and nucleotide sugar metabolism, lysosome, apoptosis, and antigen processing and presentation pathways by KEGG pathway analysis. Similarly, ribosome, lysosome, and antigen processing and presentation pathways were major terms that enriched in FL vs. CL group. However, only the ribosome pathway was significantly enriched in up-regulated DEGs in VL vs. CL group. Furthermore, five genes were randomly selected from DEGs for qPCR analysis to validate the RNA-seq data, and the result showed that there was high consistency between the RNA-seq and qPCR. Taken together, violet light exposure may affect the growth performance of S. paramamosain by reducing the ability of immunity and protein biosynthesis, and chitin metabolism.


Assuntos
Braquiúros , Quitina , Perfilação da Expressão Gênica , Luz , Muda , Transcriptoma , Animais , Quitina/metabolismo , Muda/genética , Braquiúros/genética , Braquiúros/metabolismo , Braquiúros/crescimento & desenvolvimento
10.
Bioresour Technol ; 394: 130296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185447

RESUMO

In this work, a novel boehmite-modified carbon adsorbent (BMCC) derived from moldy corn was used for simultaneous removal of P and bisphenol A (BPA) from livestock wastewater. The results showed that BMCC had a high specific surface area (308.82 m2/g) with boehmite nanoparticles anchored on its surface. BMCC showed high P and BPA decontamination capabilities (40.98 mg/g for P and 54.65 mg/g for BPA by Langmuir model). The adsorbed amount of P declined as pH increased from 4 to 10, while the adsorbed amount of BPA remained steady until pH increased to 10. After 6 cycles of BMCC use, the P and BPA adsorption efficiencies reduced by 21.75 % and 19.41 %, respectively. The adsorption of P was dominated by electrostatic attraction and complexation, while the adsorption of BPA was controlled by hydrogen bonding, electrostatic interaction, and π-π association. In conclusion, BMCC is an effective treatment for decontaminating P- and BPA-contaminated livestock wastewater.


Assuntos
Hidróxido de Alumínio , Óxido de Alumínio , Carbono , Fenóis , Poluentes Químicos da Água , Animais , Águas Residuárias , Gado , Fósforo , Descontaminação , Cinética , Compostos Benzidrílicos , Adsorção , Concentração de Íons de Hidrogênio
11.
Artigo em Inglês | MEDLINE | ID: mdl-38265583

RESUMO

Shaanxi Province is an important agricultural province in western China. Its profit-oriented management of crop residues remains a concern in the agriculture sector. Aiming to accelerate the valorization of agricultural straw and offer potential solutions for profit-oriented use of crop residues in Shaanxi, this study estimated the quantity of resources and collectable amount of crop straw by using the grain-to-straw ratio, analyzed the carbon emission reduction potential considering biochar energy and soil uses with the help of a life cycle assessment (LCA) model, and calculated the economic benefits of biochar production using waste and abandoned straw in Weinan (a city of Shaanxi). The theoretical resources and collectible amount of crop straw in Shaanxi showed an overall growth trend from 1949 to 2021, reaching 1.47 × 107 and 1.26 × 107 t in 2021 respectively. In 2021, straw from corn, wheat, and other grains accounted for 94.32% of the total straw. Among the 11 cities in Shaanxi, Weinan had the largest straw resources of 2.82 × 106 t, Yulin had the largest per capita straw resources of 0.72 t/person, and Yangling had the highest resource density of 7.60 t/hm2. The total carbon emission reduction was 3.11 × 104 t under scenario A with crop straw used for power generation. The emission reduction ranged from 1.25 × 107 to 1.27 × 107 CO2e t under scenario B with biochar production for energy and soil use. By using waste and abandoned straw in Weinan for biochar production, carbon emissions could be reduced by up to 2.07 × 105 t CO2e. In terms of the economic benefit from straw pyrolysis, the actual income was estimated to range from 0.67 × 108 to 1.33 × 108 ¥/a with different carbon prices. This study sheds light on the economic and environmental benefits of agricultural straw valorization through pyrolysis in Shaanxi, and provided an important basis for promoting the agricultural straw utilization in view of its potential for carbon emission reduction.

12.
Chemosphere ; 349: 140813, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040254

RESUMO

Heavy metal (HM) pollution has extensively spread in agricultural soils, posing potential threats to food safety and human health. Biochar and lime are two amendments used to remediate the soils contaminated with HMs. However, colloids have been shown to increase the mobility of HMs in paddy soils. Nevertheless, limited investigations have been made into the impact of biochar and lime on the formation of colloid-associated (colloidal) HMs in paddy soils. In this study, column and microcosm incubation experiments were conducted to examine how biochar and lime affected the availability of HMs (arsenic, cadmium, copper, iron, manganese, lead, and zinc) in different layers of paddy soils. The results revealed that biochar significantly inhibited the formation of colloidal HMs in the soil flooding phase, whereas the lime increased the colloidal HMs. These colloids containing HMs were identified as poorly dissolved metal sulfides. When the soil was drained, colloidal HMs transformed into dissolved forms, thereby improving the availability of HMs. Biochar decreased HM availability by reducing colloidal- but dissolved- HMs, whereas lime had the opposite effect. Hence, biochar demonstrated a stable and reliable remediation ability to decrease HM availability in paddy soil during flooding and drainage processes. In conclusion, this study highlighted that biochar efficiently reduced HM availability by mitigating the formation of colloidal HMs during flooding and their transformation into dissolved HMs during drainage in paddy soils.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Humanos , Poluentes do Solo/análise , Metais Pesados/análise , Cádmio/análise , Carvão Vegetal , Solo
13.
BMC Plant Biol ; 23(1): 620, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057713

RESUMO

BACKGROUND: Tobacco bacterial wilt (TBW) caused by Ralstonia solanacearum is the most serious soil-borne disease of tobacco that significantly reduces crop yield. However, the limited availability of resistance in tobacco hinders breeding efforts for this disease. RESULTS: In this study, we conducted hydroponic experiments for the root expression profiles of D101 (resistant) and Honghuadajinyuan (susceptible) cultivars in response to BW infection at 0 h, 6 h, 1 d, 3 d, and 7d to explore the defense mechanisms of BW resistance in tobacco. As a result, 20,711 and 16,663 (total: 23,568) differentially expressed genes (DEGs) were identified in the resistant and susceptible cultivars, respectively. In brief, at 6 h, 1 d, 3 d, and 7 d, the resistant cultivar showed upregulation of 1553, 1124, 2583, and 7512 genes, while the susceptible cultivar showed downregulation of 1213, 1295, 813, and 7735 genes. Similarly, across these time points, the resistant cultivar had downregulation of 1034, 749, 1686, and 11,086 genes, whereas the susceptible cultivar had upregulation of 1953, 1790, 2334, and 6380 genes. The resistant cultivar had more up-regulated genes at 3 d and 7 d than the susceptible cultivar, indicating that the resistant cultivar has a more robust defense response against the pathogen. The GO and KEGG enrichment analysis showed that these genes are involved in responses to oxidative stress, plant-pathogen interactions, cell walls, glutathione and phenylalanine metabolism, and plant hormone signal transduction. Among the DEGs, 239 potential candidate genes were detected, including 49 phenylpropane/flavonoids pathway-associated, 45 glutathione metabolic pathway-associated, 47 WRKY, 48 ERFs, eight ARFs, 26 pathogenesis-related genes (PRs), and 14 short-chain dehydrogenase/reductase genes. In addition, two highly expressed novel genes (MSTRG.61386-R1B-17 and MSTRG.61568) encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins were identified in both cultivars at 7 d. CONCLUSIONS: This study revealed significant enrichment of DEGs in GO and KEGG terms linked to glutathione, flavonoids, and phenylpropane pathways, indicating the potential role of glutathione and flavonoids in early BW resistance in tobacco roots. These findings offer fundamental insight for further exploration of the genetic architecture and molecular mechanisms of BW resistance in tobacco and solanaceous plants at the molecular level.


Assuntos
Ralstonia solanacearum , /genética , Ralstonia solanacearum/fisiologia , Melhoramento Vegetal , Flavonoides , Glutationa , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
14.
Front Plant Sci ; 14: 1260707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078072

RESUMO

Climate change leads to novel species interactions and continues to reshuffle ecological communities, which significantly declines carbon accumulation rates in mature forests. Still, little is known about the potential influence of multiple global change factors on long-term biomass dynamics and functional trait combinations. We used temporal demographic records spanning 26 years and extensive databases of functional traits to assess how old-growth subtropical forest biomass dynamics respond to various climatic change scenarios (extreme drought, subsequent drought, warming, elevated CO2 concentrations, and windstorm). We found that the initial severe drought, subsequent drought and windstorm events increased biomass loss due to tree mortality, which exceeded the biomass gain produced by survivors and recruits, ultimately resulting in more negative net biomass balances. These drought and windstorm events caused massive biomass loss due to tree mortality that tended towards acquisition species with high hydraulic efficiency, whereas biomass growth from survivors and recruits tended to consist of acquisition species with high hydraulic safety. Compensatory growth in this natural forest provided good explanation for the increase in biomass growth after drought and windstorm events. Notably, these dominant-species transitions reduced carbon storage and residence time, forming a positive carbon-climate feedback loop. Our findings suggest that climate changes could alter functional strategies and cause shifts in new dominant species, which could greatly reduce ecological functions and carbon gains of old-growth subtropical forests.

15.
Antioxidants (Basel) ; 12(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38136243

RESUMO

Anesthesia serves as an effective method to mitigate the stress response in aquatic animals during aquaculture and product transportation. In this study, we assessed the anesthetic efficacy of clove oil, tricaine methane-sulfonate (MS-222), ethanol, and magnesium chloride by anesthesia duration, recovery time, 24-hour survival rate, and the behavior of mud crabs (Scylla paramamosain). Additionally, the optimal anesthetic concentration for varying body weights of mud crabs was also investigated. The results revealed that clove oil emerged as the optimal anesthetic for mud crabs, with a 24-hour survival rate surpassing those observed in MS-222 and magnesium chloride treatments. Ethanol caused amputation and hyperactivity in mud crabs. Regression analyses between the optimal anesthetic concentration of clove oil and the weight categories of 0.03-27.50 g and 27.50-399.73 g for mud crabs yielded the following equations: y = 0.0036 x3 - 0.1629 x2 + 1.7314 x + 4.085 (R2 = 0.7115) and y = 0.0437 x + 2.9461 (R2 = 0.9549). Clove oil exhibited no significant impact on serum cortisol, glucose, lactate content, aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities, or superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels in mud crabs across different treatment groups. Anesthesia induced by clove oil in mud crabs resulted in an increase in inhibitory neurotransmitters such as glycine. However, the recovery from anesthesia was associated with elevated levels of the excitatory neurotransmitters L-aspartic acid and glutamate. In conclusion, clove oil proves to be a safe and optimal anesthetic agent for mud crabs, exerting no physiological stress on the species.

16.
Angew Chem Int Ed Engl ; 62(49): e202313537, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37857989

RESUMO

Overall water splitting (OWS) using semiconductor photocatalysts is a promising method for solar fuel production. Achieving a high quantum efficiency is one of the most important prerequisites for photocatalysts to realize high solar-to-fuel efficiency. In a recent study (Nature 2020, 58, 411-414), a quantum efficiency of almost 100 % has been achieved in an aluminum-doped strontium titanate (SrTiO3 : Al) photocatalyst. Herein, using the SrTiO3 : Al as a model photocatalyst, we reveal the criteria for efficient photocatalytic water splitting by investigating the carrier dynamics through a comprehensive photoluminescence study. It is found that the Al doping suppresses the generation of Ti3+ recombination centers in SrTiO3 , the surface band bending facilitates charge separation, and the in situ photo-deposited Rh/Cr2 O3 and CoOOH co-catalysts render efficient charge extraction. By suppressing photocarrier recombination and establishing a facile charge separation and extraction mechanism, high quantum efficiency can be achieved even on photocatalysts with a very short (sub-ns) intrinsic photocarrier lifetime, challenging the belief that a long carrier lifetime is a fundamental requirement. Our findings could provide guidance on the design of OWS photocatalysts toward more efficient solar-to-fuel conversion.

17.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37837142

RESUMO

Near-field acoustic holography (NAH) based on compressing sensing (CS) theory enables accurate reconstruction of sound fields using a limited number of sampling points. However, the successful implementation of this technique depends on two crucial factors: (1) the appropriate selection or construction of the spatial basis and (2) an effective sparse regularization process. To enhance reconstruction performance for elongated sound sources, this paper proposes a novel sound field reconstruction method that combines prolate spheroidal wave functions (PSWFs) with the orthogonal matching pursuit (OMP) algorithm. In this method, PSWFs serve as a sparse spatial basis for representing the radiated sound field. The sparse coefficients are determined by the OMP algorithm in a linear subspace composed of basic functions that best match the residual error. The OMP algorithm effectively identifies significant components before potentially selecting incorrect ones by setting an appropriate stopping rule. Numerical simulations are conducted using a line-array source model. The results show that the proposed method can accurately reconstruct the sound pressures of the elongated source model using a relatively small number of samplings. In addition, the proposed method exhibits robustness across a wide frequency range, diverse array configurations and various sampling numbers. The experimental results further validate the feasibility and reliability of the proposed method.

18.
Bioresour Technol ; 388: 129707, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659668

RESUMO

This study was designed to explore the magnetite in maturation and humification during pig manure (PM) and wolfberry branch fillings (BF) composting. Different proportions of magnetite (T1, 0%; T2, 2.5%; T3, 5%; T4, 7.5%;) were blended with PM for 50 days of composting. The findings indicated magnetite amendment has no influence on the maturity, and the 5% ratio significantly promoted humic acid (HA) formation and fulvic acid (FA) decomposition compared to other treatments. Compared to T1, magnetite addition significantly increased CO2 and CH4 emissions by 106.39%-191.69% and 6.88-13.72 times. The further analysis suggested that magnetite improved Ruminofilibacter activity were significantly positively associated with HA, and C emissions. The further PICRUSt 2 analysis showed membrane transport may enhance environmental information processing by magnetite. Overall, these results demonstrated higher organic matter (OM) degradation and HA formation with an additional increase in microbial activity highlighted advantages of using magnetite during PM composting.

19.
Sci Rep ; 13(1): 13715, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608074

RESUMO

This study aimed to explore sex differences in the relationship between thyroid function indicators and suicide attempts in first-episode and drug-naïve young major depressive disorder (MDD) patients with comorbid anxiety (MDA). A total of 917 MDD patients (aged 18-35 years) were recruited. The Hamilton depression rating scale (HAMD-17), Hamilton anxiety rating scale (HAMA), positive and negative syndrome scale (PANSS) positive subscale and clinical global impression of severity scale (CGI-S) were used. 467 patients were classified as MDA. The prevalence of suicide attempts was 31.3% in MDA patients, which was significantly higher than that (7.3%) in MDD patients without anxiety. Compared with MDA patients without suicide attempts, MDA patients with suicide attempts were older, had a later age of onset, higher HAMD-17, HAMA, and PANSS positive symptom subscale scores, as well as higher TSH, TgAb and TPOAb levels. For male patients, TSH and TPOAb levels were independently associated with suicide attempts. For female patients, HAMA, PANSS positive symptom scores, CGI-S score and TPOAb levels were independently associated with suicide attempts. Our results suggest that the indicators of thyroid function which can predict suicide attempts in male and female MDA patients have sex differences.


Assuntos
Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/epidemiologia , Tentativa de Suicídio , Glândula Tireoide , Ansiedade/epidemiologia , Tireotropina
20.
Sci Total Environ ; 901: 166369, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37597556

RESUMO

As a toxic heavy metal, cadmium (Cd) easily enters into rice while rice grains greatly contribute to the dietary Cd intake in the populations consuming rice as a staple food. The availability of Cd in paddy soil determines the accumulation of grain Cd. Soil drainage leads to the remobilization of Cd, increasing bioavailability of Cd. In contrast, soil flooding results in little contribution of soil Cd to grain Cd, which is generally attributed to sulfate reduction induced by sulfate-reducing bacteria (SRB) in paddy soils. However, effects of SRB cultured from the paddy soil on the solubility and redox behavior of Cd have been seldom investigated before. Here, we used SRB enrichment cultures to investigate the temporal dynamics of Cd2+. The results showed that SRB enrichment cultures efficiently reduced solution redox potential (Eh) to less than -100 mV and gradually increased pH to neutral, demonstrating their ability to create a good anaerobic environment. The solubility of Cd obviously decreased in the anaerobic phase and Cd2+ was transformed into poorly dissolved CdS near the SRB cell wall edge. The addition of Zn2+ and/or Fe2+ further improved the decrease in Cd solubility and facilitated the formation of polymetallic sulfides as a consequence of promoting the production of S0 and dissolved sulfides (S2-/HS-) and the transformation of S0 into S2-/HS-. Little of Cd was detected in the media upon reoxidation, which was probably due to the high pH and the interaction between CdS and ZnS/FeS. Conclusively, these results demonstrate the detailed dynamic processes that explain the essential role of SRB in regulating the redox dynamics of chalcophile heavy metals and their bioavailability in paddy soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...